
/*
 * Semantics for shared and private memory areas are different past the end
 * of the file. A shared mapping past the last page of the file is an error
 * and results in a SIGBUS, while a private mapping just maps in a zero page.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
 *
 * WSH 06/04/97: fixed a memory leak and moved the allocation of new_page
 * ahead of the wait if we're sure to need it.
 */

static unsigned long filemap_nopage(struct vm_area_struct * area, unsigned

long address, int no_share)
{
 struct file * file = area->vm_file;
 struct dentry * dentry = file->f_dentry;
 struct inode * inode = dentry->d_inode;
 unsigned long offset, reada, i;
 struct page * page, **hash;
 unsigned long old_page, new_page;

 new_page = 0;
 offset = (address & PAGE_MASK) - area->vm_start + area->vm_offset;
 if (offset >= inode->i_size && (area->vm_flags & VM_SHARED) &&
area->vm_mm == current->mm)
 goto no_page;

 /*
 * Do we have something in the page cache already?
 */
 hash = page_hash(inode, offset);
 page = __find_page(inode, offset, *hash);
 if (!page)
 goto no_cached_page;

found_page:
 /*
 * Ok, found a page in the page cache, now we need to check
 * that it's up-to-date. First check whether we'll need an
 * extra page -- better to overlap the allocation with the I/O.
 */
 if (no_share && !new_page) {

 new_page = page_cache_alloc();
 if (!new_page)
 goto failure;
 }

 if (PageLocked(page))
 goto page_locked_wait;
 if (!PageUptodate(page))
 goto page_read_error;

success:
 /*
 * Found the page, need to check sharing and possibly
 * copy it over to another page..
 */
 old_page = page_address(page);
 if (!no_share) {
 /*
 * Ok, we can share the cached page directly.. Get rid
 * of any potential extra pages.
 */
 if (new_page)
 page_cache_free(new_page);

 flush_page_to_ram(old_page);
 return old_page;
 }

 /*
 * No sharing ... copy to the new page.
 */
 copy_page(new_page, old_page);
 flush_page_to_ram(new_page);
 page_cache_release(page);
 return new_page;

no_cached_page:
 /*
 * Try to read in an entire cluster at once.
 */
 reada = offset;
 reada >>= PAGE_CACHE_SHIFT + page_cluster;
 reada <<= PAGE_CACHE_SHIFT + page_cluster;

 for (i = 1 << page_cluster; i > 0; --i, reada += PAGE_CACHE_SIZE)
 new_page = try_to_read_ahead(file, reada, new_page);

 if (!new_page)
 new_page = page_cache_alloc();
 if (!new_page)
 goto no_page;

 /*
 * During getting the above page we might have slept,
 * so we need to re-check the situation with the page
 * cache.. The page we just got may be useful if we
 * can't share, so don't get rid of it here.
 */
 page = find_page(inode, offset);
 if (page)
 goto found_page;

 /*
 * Now, create a new page-cache page from the page we got
 */
 page = page_cache_entry(new_page);
 new_page = 0;
 add_to_page_cache(page, inode, offset, hash);

 if (inode->i_op->readpage(file, page) != 0)
 goto failure;

 goto found_page;

page_locked_wait:
 __wait_on_page(page);
 if (PageUptodate(page))
 goto success;

page_read_error:
 /*
 * Umm, take care of errors if the page isn't up-to-date.
 * Try to re-read it _once_. We do this synchronously,
 * because there really aren't any performance issues here
 * and we need to check for errors.
 */
 if (inode->i_op->readpage(file, page) != 0)
 goto failure;

 wait_on_page(page);
 if (PageError(page))
 goto failure;
 if (PageUptodate(page))
 goto success;

 /*
 * Things didn't work out. Return zero to tell the
 * mm layer so, possibly freeing the page cache page first.
 */
failure:
 page_cache_release(page);
 if (new_page)
 page_cache_free(new_page);
no_page:
 return 0;
}

