
/*
 * Select the task with maximal swap_cnt and try to swap out a page.
 * N.B. This function returns only 0 or 1. Return values != 1 from
 * the lower level routines result in continued processing.
 */

static int swap_out(unsigned int priority, int gfp_mask)

{
struct task_struct * p, * pbest;
int counter, assign, max_cnt;

/*
 * We make one or two passes through the task list, indexed by
 * assign = {0, 1}:
 * Pass 1: select the swappable task with maximal RSS that has
 * not yet been swapped out.
 * Pass 2: re-assign rss swap_cnt values, then select as above.
 *
 * With this approach, there's no need to remember the last task
 * swapped out. If the swap-out fails, we clear swap_cnt so the
 * task won't be selected again until all others have been tried.
 *
 * Think of swap_cnt as a "shadow rss" - it tells us which process
 * we want to page out (always try largest first).
 */
counter = nr_tasks / (priority+1);
if (counter < 1)

counter = 1;
if (counter > nr_tasks)

counter = nr_tasks;

for (; counter >= 0; counter--) {
assign = 0;
max_cnt = 0;
pbest = NULL;

select:
read_lock(&tasklist_lock);
p = init_task.next_task;
for (; p != &init_task; p = p->next_task) {

if (!p->swappable)
continue;

 if (p->mm->rss <= 0)
continue;

/* Refresh swap_cnt? */

if (assign)
p->mm->swap_cnt = p->mm->rss;

if (p->mm->swap_cnt > max_cnt) {
max_cnt = p->mm->swap_cnt;
pbest = p;

}
}
read_unlock(&tasklist_lock);
if (!pbest) {

if (!assign) {
assign = 1;
goto select;

}
goto out;

}

if (swap_out_process(pbest, gfp_mask))

return 1;
}

out:
return 0;

}

static int swap_out_process(struct task_struct * p, int gfp_mask)

{
unsigned long address;
struct vm_area_struct* vma;

/*
 * Go through process' page directory.
 */
address = p->mm->swap_address;

/*
 * Find the proper vm-area
 */
vma = find_vma(p->mm, address);
if (vma) {

if (address < vma->vm_start)
address = vma->vm_start;

for (;;) {

int result = swap_out_vma(p, vma, address, gfp_mask);

if (result)
return result;

vma = vma->vm_next;
if (!vma)

break;
address = vma->vm_start;

}
}

/* We didn't find anything for the process */
p->mm->swap_cnt = 0;
p->mm->swap_address = 0;
return 0;

}

static int swap_out_vma(struct task_struct * tsk, struct vm_area_struct * vma,

unsigned long address, int gfp_mask)
{

pgd_t *pgdir;
unsigned long end;

/* Don't swap out areas which are locked down */
if (vma->vm_flags & VM_LOCKED)

return 0;

pgdir = pgd_offset(tsk->mm, address);

end = vma->vm_end;
while (address < end) {

int result = swap_out_pgd(tsk, vma, pgdir, address, end, gfp_mask);

if (result)
return result;

address = (address + PGDIR_SIZE) & PGDIR_MASK;
pgdir++;

}
return 0;

}

static inline int swap_out_pgd(struct task_struct * tsk, struct vm_area_struct *

vma, pgd_t *dir, unsigned long address, unsigned long end, int gfp_mask)
{

pmd_t * pmd;
unsigned long pgd_end;

if (pgd_none(*dir))
return 0;

if (pgd_bad(*dir)) {
printk("swap_out_pgd: bad pgd (%08lx)\n", pgd_val(*dir));
pgd_clear(dir);
return 0;

}

pmd = pmd_offset(dir, address);

pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;
if (end > pgd_end)

end = pgd_end;

do {

int result = swap_out_pmd(tsk, vma, pmd, address, end, gfp_mask);

if (result)
return result;

address = (address + PMD_SIZE) & PMD_MASK;
pmd++;

} while (address < end);
return 0;

}

static inline int swap_out_pmd(struct task_struct * tsk, struct vm_area_struct

* vma, pmd_t *dir, unsigned long address, unsigned long end, int gfp_mask)
{

pte_t * pte;
unsigned long pmd_end;

if (pmd_none(*dir))
return 0;

if (pmd_bad(*dir)) {

printk("swap_out_pmd: bad pmd (%08lx)\n", pmd_val(*dir));
pmd_clear(dir);
return 0;

}

pte = pte_offset(dir, address);

pmd_end = (address + PMD_SIZE) & PMD_MASK;
if (end > pmd_end)

end = pmd_end;

do {
int result;
tsk->mm->swap_address = address + PAGE_SIZE;

result = try_to_swap_out(tsk, vma, address, pte, gfp_mask);

if (result)
return result;

address += PAGE_SIZE;
pte++;

} while (address < end);
return 0;

}

/*
 * The swap-out functions return 1 if they successfully
 * threw something out, and we got a free page. It returns
 * zero if it couldn't do anything, and any other value
 * indicates it decreased rss, but the page was shared.
 *
 * NOTE! If it sleeps, it *must* return 1 to make sure we
 * don't continue with the swap-out. Otherwise we may be
 * using a process that no longer actually exists (it might
 * have died while we slept).
 */

static int try_to_swap_out(struct task_struct * tsk, struct vm_area_struct*

vma, unsigned long address, pte_t * page_table, int gfp_mask)
{

pte_t pte;
unsigned long entry;
unsigned long page;
struct page * page_map;

pte = *page_table;
if (!pte_present(pte))

return 0;
page = pte_page(pte);
if (MAP_NR(page) >= max_mapnr)

return 0;
page_map = mem_map + MAP_NR(page);

if (pte_young(pte)) {
/*
 * Transfer the "accessed" bit from the page
 * tables to the global page map.
 */
set_pte(page_table, pte_mkold(pte));
set_bit(PG_referenced, &page_map->flags);
return 0;

}

if (PageReserved(page_map)
 || PageLocked(page_map)
 || ((gfp_mask & __GFP_DMA) && !PageDMA(page_map)))

return 0;

/*
 * Is the page already in the swap cache? If so, then
 * we can just drop our reference to it without doing
 * any IO - it's already up-to-date on disk.
 *
 * Return 0, as we didn't actually free any real
 * memory, and we should just continue our scan.
 */
if (PageSwapCache(page_map)) {

entry = page_map->offset;
swap_duplicate(entry);
set_pte(page_table, __pte(entry));

drop_pte:
vma->vm_mm->rss--;
flush_tlb_page(vma, address);
__free_page(page_map);
return 0;

}

/*

 * Is it a clean page? Then it must be recoverable
 * by just paging it in again, and we can just drop
 * it..
 *
 * However, this won't actually free any real
 * memory, as the page will just be in the page cache
 * somewhere, and as such we should just continue
 * our scan.
 *
 * Basically, this just makes it possible for us to do
 * some real work in the future in "shrink_mmap()".
 */
if (!pte_dirty(pte)) {

pte_clear(page_table);
goto drop_pte;

}

/*
 * Don't go down into the swap-out stuff if
 * we cannot do I/O! Avoid recursing on FS
 * locks etc.
 */
if (!(gfp_mask & __GFP_IO))

return 0;

/*
 * Ok, it's really dirty. That means that
 * we should either create a new swap cache
 * entry for it, or we should write it back
 * to its own backing store.
 *
 * Note that in neither case do we actually
 * know that we make a page available, but
 * as we potentially sleep we can no longer
 * continue scanning, so we migth as well
 * assume we free'd something.
 *
 * NOTE NOTE NOTE! This should just set a
 * dirty bit in page_map, and just drop the
 * pte. All the hard work would be done by
 * shrink_mmap().
 *
 * That would get rid of a lot of problems.
 */

flush_cache_page(vma, address);
if (vma->vm_ops && vma->vm_ops->swapout) {

pid_t pid = tsk->pid;
pte_clear(page_table);
flush_tlb_page(vma, address);
vma->vm_mm->rss--;

if (vma->vm_ops->swapout(vma, page_map))
kill_proc(pid, SIGBUS, 1);

__free_page(page_map);
return 1;

}

/*
 * This is a dirty, swappable page. First of all,
 * get a suitable swap entry for it, and make sure
 * we have the swap cache set up to associate the
 * page with that swap entry.
 */
entry = get_swap_page();
if (!entry)

return 0; /* No swap space left */

vma->vm_mm->rss--;
tsk->nswap++;
set_pte(page_table, __pte(entry));
flush_tlb_page(vma, address);
swap_duplicate(entry); /* One for the process, one for the swap cache */
add_to_swap_cache(page_map, entry);
/* We checked we were unlocked way up above, and we
 have been careful not to stall until here */
set_bit(PG_locked, &page_map->flags);

/* OK, do a physical asynchronous write to swap. */
rw_swap_page(WRITE, entry, (char *) page, 0);

__free_page(page_map);
return 1;

}

