Jeff Canna (jcanna@r olemodel soft.com)
RoleM odel Software, Inc.

March 2001
lyre[AKA]
-XP 1 (" " )

R R R &R &

bug



Programming XP

bug

VS

Extreme



Juint Java

Junit
Junit

90 10
let it be

Java Getting  Setting “ ”



domain object



Y

Y

Ant

JUnit

Ant

Junit

Java

2000

Getting

12

Getting
Setting

Setting



Jeff Canna 1982
UNIX GUIs

Java

Canna jcanna@rol emodel soft.com

1 -XP Extreme Programming
XP

XP

http://ww. AKA. org. cn

Email AKAM agazine@yahoo.com

http: //mww-106.ibm.com/devel operwor ks/libr ar y/j -test.html aw
http: //mww-900.ibm.convdevel oper Wor ks/javalj -test/index.shtml

Using unit and functional testsin the development process

Jeff Canna (jcanna@rolemodel soft.com)
RoleModel Software, Inc.

March 2001



Testing. Yuck! Puh! Aagh! I've always hated testing. Testing, both unit and functional, is something
that gets in the way of the "real" work. Everyone knows that their code is perfect, right? In the
unlikely event that the code does need to change, the comments are so well written that anyone

could figure it out. Wow, am | in need of growth (maybe some counseling as well.

Over the last few years, unit testing has become central to the way | write software, thanks to a lightweight
programming methodology called Extreme Programming (XP) (see Resources). This methodology requires
that | write unit tests for every function | add, and that | maintain those tests. | can't integrate any code with

failing unit tests. As the code base grows, these tests allow developers to integrate changes with confidence.

Originally 1 thought the existence of these unit tests would make functional tests unnecessary. Oops, wrong
again. Functional tests and unit tests are vastly different. It took me along time to understand how they are

different and how to use them together to enhance the devel opment process.

This article explores the differences between unit testing and functional testing. It aso outlines a process
for using them in your daily development.

Testing and the development process

As a developer, testing is so important that you should be doing it all of the time. It should not be relegated
to a specific stage of the development cycle. It definitely shouldn't be the last thing done before giving your
system to a customer. How else are you going to know when you're done? How else are you going to know
if your fix for a minor bug broke a mgjor function of the system? How else will the system be able evolve
into something more than is currently envisioned? Testing, both unit and functional, needs to be an
integrated part of the development process.

Unit tests should become central to how you write code, especialy if the project you are working on has
tight time constraints and you'd like to keep it under control. Unit tests are so important that you should

write your tests before you write the code.

A maintained suite of unit tests:

Represents the most practical design possible
Provides the best form of documentation for classes
Determines when aclass is "done"

Gives a developer confidence in the code

Is abasis for refactoring quickly

R & & & &

Unit tests constitute design documentation that evolves naturally with a system. Read that again. Thisis the
Holy Grail of software development, documentation that evolves naturally with a system. What better way
to document a class than to provide a coded set of use cases. That's what these unit tests are: a set of coded
use cases that document what a class does, given a controlled set of inputs. As such, this design document
is always up-to-date because the unit tests always have to pass.



You should write tests before you write code. Doing so provides a design for the class that the test will
exercise, allowing you to focus on small chunks of code. This practice also keeps the design simple. You
aren't trying to look into the future, implementing unnecessary functionality. Writing tests first additionally

lets you know when the class is complete. When all the tests pass, the task is complete.

Lastly, unit tests provide you with a high degree of confidence, which trandates into developer satisfaction.
If you run unit tests whenever you make changes to code, you'll find out immediately if your changes broke
something.

Functional tests are even more important than unit tests because they verify that your system is ready for
release. The functiona tests define your working system in a useful manner. A maintained suite of

functional tests;

& Captures user requirements in a useful way
& Givesthe team (users and devel opers) confidence that the system meets those requirements

Functiona tests capture user requirements in a useful way. Traditional development captures reguirements
in use cases. Usually, people argue about the use cases and spend a lot of time refining them. When they're
finished, al they have is paper. Functiona tests are like self-validating use cases. Extreme Programming
methodology can illustrate this concept. XP Stories are commitments to a future conversation between the
customer and developers. Functional tests are the output of this conversation. Stories without functional
tests can't be built very well.

Functional tests fill in the gap left by unit tests and give the team even more confidence in the code. Unit
tests miss many bugs. They may give you al the code coverage you need, but they might not give you al
the system coverage you need. The functional tests will expose problems that your unit tests are missing. A
maintained, automated suite of functional tests might not catch everything either, but it will catch more than
the best suite of unit tests can catch aone.

Unit versus functional tests

Unit tests tell a developer that the code is doing things right; functional tests tell a developer that the code is
doing the right things.

Unit tests

Unit tests are written from a programmer's perspective. They ensure that a particular method of a class
successfully performs a set of specific tasks. Each test confirms that a method produces the expected output
when given a known input.

Writing a suite of maintainable, automated unit tests without a testing framework is virtualy impossible.
Before you begin, choose a framework that your team agrees upon. You will be using it constantly, so you
better like it. There are severa unit-testing frameworks available from the Extreme Programming Web site



(see Resources). The one | am most familiar with is JUnit for testing Java code.

Functional tests

Functional tests are written from a user's perspective. These tests confirm that the system does what users
are expecting it to.

Many times the development of a system is likened to the building of a house. While this analogy isn't quite
correct, we can extend it for the purposes of understanding the difference between unit and functional tests.
Unit testing is analogous to a building inspector visiting a house's construction site. He is focused on the
various internal systems of the house, the foundation, framing, electrical, plumbing, and so on. He ensures
(tests) that the parts of the house will work correctly and safely, that is, meet the building code. Functional
tests in this scenario are analogous to the homeowner visiting this same construction site. He assumes that
the internal systems will behave appropriately, that the building inspector is performing his task. The
homeowner is focused on what it will be like to live in this house. He is concerned with how the house
looks, are the various rooms a comfortable size, does the house fit the family's needs, are the windows in a
good spot to catch the morning sun. The homeowner is performing functiona tests on the house. He has the
user's perspective. The building inspector is performing unit tests on the house. He has the builder's
perspective.

Like unit tests, writing a suite of maintainable, automated functiona tests without a testing framework is
virtually impossible. JUnit is very good at unit testing; however, it unravels when attempting to write

functiona tests. There is no equivalent of JUnit for functiona testing. There are products available for this
purpose, but | have never seen these products used in a production environment. If you can't find a testing
framework that meets your needs, you'll have to build one.

No matter how clever we are at building the projects we work on, no matter how flexible the systems are
that we build, if what we produce isn't usable, we've wasted our time. As a result, functional testing is the

most important part of development.

Because both types of tests are necessary, you'll need guidelines for writing them.

How to write unit tests

It is easy to become overwhelmed when you start writing unit tests. The best way to start is to create unit
tests for new code. (It is difficult to start by creating unit tests for existing code, but it is possible.) Start

with new code, get used to the process, and then revisit the existing code to create a test suite for it.

As mentioned earlier, you should write unit tests before you write the code they will test. How can you
write atest for something that doesn't exist yet? Very good question, Grasshopper. Mastering this practice is
ninety percent mental and ten percent technical. What | mean is that you simply pretend that the class you
are writing the test for exists. Then write the test. Initially you will get alot of syntax errors, but stay with it.



What you are doing through this exercise is defining the interface that the class will implement. The next
step is to run your unit tests, fix the syntax errors (that is, implement the class with the interfaces just
defined by your test), and run the tests again. Repeat this process, each time writing just enough code to fix

the failures. Run the tests until they pass. The code is "done" when al of the unit tests pass.

In general, there should be a unit test for every public method of your class. However, methods with very
straightforward functionality, for example, getter and setter methods, don't need unit tests unless they do
their getting and setting in some "interesting" way. A good guideline to follow is to write a unit test
whenever you feel the need to comment some behavior in the code. If you're like many programmers who
aren't fond of commenting code, unit tests are a way of documenting your code behavior.

Put the unit tests in the same package as the associated classes being tested. This type of organization
allows each unit test to call methods and reference variables that have access modifiers of package or

protected in the class being tested.

Avoid using domain objects in unit tests. Domain objects are objects specific to an application. For
example, a spreadsheet application might have a register object; this object would be a domain object. If
you have a class that aready knows about the domain objects, it is fine to use these objects in your tests.
But if you have a class that isn't using these objects, do not tie these objects to the class through the tests.
The reason this practice should be avoided is al wrapped up with code reuse. Very often the classes created
for a project apply to other projects. Reusing these classes may be straightforward. But if the tests for the
reused classes use another project's domain objects, getting the tests to work can become a very time-
consuming activity. Usually the test will either be dropped or rewritten.

These mechanics will serve you well, but a comprehensive suite of unit tests will not be worth anything if
you don't run the tests. Running the tests early and often gives you absolute confidence in your code al the
time. As the project proceeds, you will add features. Running the tests will tell you if the new features
you've just implemented have broken something.

Revisit your existing code after you have mastered the mechanics of writing unit tests. Writing tests for
existing code can be a chalenge. Don't test for testing sake. Write tests in a "just-in-time" fashion, when
you find the need to modify a class that doesn't have good (or any) tests. That isthe time to add the tests. As
always, the unit tests for that class should capture the functionality for each of its methods. One of the
easiest ways to find out what the test should be testing is to look at the comments in the existing code. Any
comment should be captured in a unit test. Trandate block comments at the beginning of methods
describing what the method does into unit tests.

How to writefunctional tests

Even though functiona testing is so important, it has a reputation as the ugly stepchild of development. On
most projects, there is a separate group that does functional testing. There is usually an army of people
constantly interacting with the system to determine whether it behaves correctly. This attitude and group

setup is foolishness.



Functional testing should be approached much like unit testing. Write the tests as soon as there is code to be

written that produces something a user will interact with (such as a dialog), but before actually writing the

code. Work with a user to write functional tests that capture the user requirements. Whenever you start a
new task, describe the task in the functional testing framework. Your development effort then moves

forward, unit testing when you add new code. When all of the unit tests pass, run the original functional test

to seeif it is passing or if it needs modification.

Ideally, the concept of a functional testing group should disappear. Developers should be writing functional
tests with users. After there is a suite of functional tests for the system, the members of the development

team responsible for functional testing should bombard the system with variations of the initial tests.

The line between unit and functional testing

Often it isn't clear where to draw the line between unit and functional testing. To be honest, it isn't dways
clear to me where this line is either. While writing unit tests, | have used the following guideines to

determine if the unit test being written is actually a functional test:

& If aunit test crosses class boundaries, it might be a functional test.

& If aunit test is becoming very complicated, it might be a functional test.

& If aunit test is fragile (that is, it is a valid test but it has to change continually to handle different user
permutations), it might be afunctional test.

£ |f aunit test is harder to write than the code it is testing, it might be a functional test.

Notice the phrase "it might be a functiona test." There are no hard and fast rules here. There is a line
between unit tests and functional tests, but you have to decide where the line is. The more comfortable you

get with unit tests, the clearer it will be when a particular test is crossing the line from unit to functional .

Conclusion

Unit tests are written from the developer's perspective and focus on particular methods of the class under
test. Use these guidelines when writing unit tests:

& Write the unit test before writing code for classit tests.

& Capture code comments in unit tests.

& Test dl the public methods that perform an “interesting” function (that is, not getters and setters,
unless they do their getting and setting in some unique way).

#  Put each test case in the same package as the class it's testing to gain access to package and protected
members.

& Avoid using domain-specific objects in unit tests.

Functional tests are written from the user's perspective and focus on system behavior that users are
interested in. Find a good functiona testing framework, or develop one, and use these functional tests to
identify what the user really wants. In this way, the functional tester gains an automated tool and has a

starting point for using the tool.



Make unit testing and functional testing centra to your development process. If you do, you will have
confidence that your system works and can grow. If you don't, you can't be sure. Testing may not be fun,
but having working unit and functional tests makes development a lot more fun.

Resour ces

& "Incremental development with Ant and JUnit" (developerWorks, November 2000) explores the
benefits of unit testing, in particular using Ant and JUnit.

&  Become acquainted with the methodoligies of Extreme Programming.

&  Download various unit testing frameworks from the Extreme Programming Web site.

About the author

Jeff Canna has developed software systems since 1982. His experience ranges from

mainframes to hand-held platforms. Mr. Cannas primary experience has been in the
development of GUIs on UNIX platforms. Recently he has focused on delivering
content via server-side Java technology. He has aso become very energized by a new
programming methodology caled Extreme Programming, which is changing his
approach to project development. Contact Mr. Canna at jcanna@rolemodel soft.com.




