Aka 1/19

RUP and XP

Gary Pollice

pany[AKA]
shinelee FatCat Hu guizhiyang beta [AKA]

Part I: Finding Common Ground

exXtreme Programming (XP) is hot! Attend any software development conference
today and XP presentations are standing room only. Why? | have observed that
XP speaks to the programmer in almost every technical manager and practicing
software developer. We all remember simpler times when we sat at the keyboard
and coded. Some of us were even happy testing and fixing the code because we
wanted it to be perfect. Our code was our legacy to future generations of
programmers. And we all had heroes, legends who cranked out more code with
fewer errors than we thought humanly possible.

XP XP

XP

XP hints that we may yet return to the "good old days."
XP " "

Why don®t tears of nostalgia well up in our eyes when we think of the Rational
Unified Process (RUP)? Because RUP contains the dreaded "process" word, and
most of us have had bad experiences with process. We recall that it was too
heavy and too restrictive. Something that wasted our valuable time; something
that kept us from coding. But the process itself was not the real culprit: our
bad experiences stemmed from the way the process was implemented and used.
Rational Unified Process (RUP)
RUP " "

In this two-part series, we will look at how to make the implementation and
use of RUP a good experience. We will see how 1t can be used effectively for a
small project, and specifically how to incorporate XP practices into the
broader scope of a RUP-based project. This month®s installment will examine

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka

2/19

the areas where the two come together. Next month we will look at how RUP
differs from XP, when and why you need to consider the differences, and what
benefits accrue with the added strengths of RUP.

XP

RUP
XP RUP
RUP
RUP

If you"re not familiar with the two processes, then start with my overviews of

XP and RUP.

How do you decide on the right process
for a software development project? If
you are considering using XP as your
process, the first question you need to
ask and answer is: Can | actually use XP
for this project? This may not be as
easy as 1t sounds. There are lively
debates on what makes a project an
exXtreme project (see
http://c2.com/cqgi/wiki?AreYouDoingXp for
one view). If you don"t refactor your
code continuously and write tests before
you code, for example, then are you
doing XP? In truth, many, if not most,
so-called XP projects do not follow XP
in an orthodox way. Most use some XP
techniques; few use them all.

XP

XP

http://c2.com/cgi/wiki?AreYouDoingXp

XP - -
XP XP
XP

IT you"re thinking of using XP straight

up, here are some more specific
guestions you should ask yourself:

file://F:\AKA\AKA

XP RUP

\AKA Magzine\RUP%20and%20XP_Chinese.html

Overview: eXtreme Programming

eXtreme Programming (XP) 1is a
software development discipline
developed by Kent Beck in 1996. It
iIs based on four values:
communication, simplicity,
feedback, and courage. It stresses
continual communication between the
customer and development team
members by having an on-site
customer throughout the development
lifecycle. The on-site customer
decides what will be built and in
what order. The development team
keeps things simple by continually
refactoring code and producing a
minimal set of non-code artifacts.
Many short releases and continual
unit testing are the feedback
mechanisms. Courage means doing the
right thing, even when it is not
the most popular thing to do. It
means being honest about what you
can and cannot do.

XP Kent Beck 1996

2002-3-29

Aka

XP

)

Is the project team small (ten
people or less)?

~ Is the team co-located, and willing
and able to do pair programming?

-« Do we have a commitment for an
on-site customer?

IT you answered "no" to any of these
questions, then you may not be a
candidate for a full-fledged XP project.
You may, however, be able to use the RUP
and incorporate selected XP techniques
into it.

RUP XP

Unlike XP, which focuses narrowly on
small, co-located teams with on-site
customers, RUP 1s broader and more
flexible. It addresses many styles of
software development projects and urges
users to adapt its elements to suit
their specific projects. It is not hard
to imagine an adaptation of RUP that
matches XP very closely. In fact, this
is exactly the claim that Robert Martin

makes for his dX Process.t

XP RUP

XP RUP
Robert Martin dx

|=

file://F:\AKA\AKA

3/19

Twelve XP practices support the
four values. They are:
12 XP 4

K

The planning game.
Determine the features in the
next release through a
combination of prioritized
stories and technical
estimates.

~ Small releases. Release the
software often to the
customer in small incremental
versions.

- Metaphor. The metaphor is a
simple shared story or
description of how the system
works.

-~ Simple design. Keep the
design simple by keeping the
code simple. Continually look
for complexity in the code and
remove it at once.

~ Testing. The customer writes
tests to test the stories.
Programmers write tests to
test anything that can break

\AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka

XP Practices and the RUP
XP RUP

The focus of XP is code: writing the

code, keeping it simple, and getting it

correct. This 1s a good thing, as far as

it goes. If you build software,

ultimately it comes down to delivering

executable software to your customers.
XP

Let"s look at nine specific XP practices
to see how they complement or overlap
with the RUP. For each practice, we will
briefly discuss benefits as well as
limitations and hidden assumptions. See
the XP overview for a brief description
of each specific practice.
XP
RUP

XP

Everything Starts with Planning

When 1t comes to planning, RUP and XP
agree: plans change, and you cannot,
practically speaking, plan a complete
project in detail. The best approach is
to anticipate changes and ensure that
you control the associated risks.
According to XP, you should prioritize
the "stories™ you want your system to
fulfill, and get technical estimates for
the effort required to implement them.
Is prioritizing stories any different
from prioritizing use cases? Not really,
if you equate stories with use cases.
Some of the example stories from XP
literature are not really use cases, so
it may not make sense to equate the two.

file://F:\AKA\AKA

\AKA Magzine\RUP%20and%20XP_Chinese.html

4/19

in the code. These tests are
written before the code is
written.

Bug

- Refactoring. This is a

simplifying technique to
remove duplication and
complexity from code.

- Pair programming. Teams of

two programmers at a single
computer develop all the
code. One writes the code, or
drives, while the other
reviews the code for
correctness and
understandability.

Collective ownership.
Everyone owns all of the
code. This means that
everyone has the ability to
change any code at any time.

Continuous integration. Build
and integrate the system
several times a day whenever
any implementation task is
completed.

Forty-hour week.
Programmers cannot work at
peak efficiency if they are

2002-3-29

Aka

A story describes a unit of work, and XP
assumes that the story®s context is
obvious. A use case provides a complete
set of operations that provide value to
a system user. | believe stories and use
cases complement each other, and that a
use case can be realized through
multiple stories. A use case speaks to
all stakeholders, whereas stories speak
in more detail to developers. You can
produce use-case realizations (according
to the RUP) by filling in a complete,
more detailed context for the stories.
RUP XP

XP

XP

XP

RUP

Alistair Cockburn says that stories are
promises for conversations between the
on-site customer and the programmer.
These conversations are of great value,
and the RUP specifically asks you to
consider capturing their results iIn use
cases and other requirements artifacts.
XP implies that you should capture the
results but provides little guidance on
how to do 1t. In XP, the final resting
place for requirements or design
decisions is the code. Unfortunately,
code is not an effective communication
medium for all stakeholders.

file://F:\AKA\AKA

5/19

tired. Overtime is never
allowed during two
consecutive weeks.

40

On-site customer. A real
customer works in the
development environment
full-time to help define the
system, write tests, and
answer questions.

. Coding standards. The

programmers adopt a
consistent coding standard.

For more information on XP, see:

XP

Kent Beck, Extreme
Programming Explained.
Addison-Wesley, 2000.

Ron Jeffries, et al.,
Extreme Programming
Installed. Addison-
Wesley, 2001.

Kent Beck and Martin
Fowler, Planning Extreme
Programming. Addison-
Wesley, 2001.

You can also find information on XP

at:

http://c2.com/cqi/wiki?

ExtremeProgramming

http://www.extremeprogramming.org/

http://www.Xprogramming.com/

\AKA Magzine\RUP%20and%20XP_Chinese.html

2002-3-29

Aka 6/19

RUP
XP XP

Getting technical estimates from the developer who will implement a feature is
good practice. RUP does not go into detail about how to obtain these
estimates, but 1f you have confidence in the developer, then adopt the
practice as part of your planning process. In fact, go beyond this practice:
When you get into the details of project deliverables, do estimates for
documentation, training, support, and manufacturing.

RUP

Simple Design: No Arguments

Every technical discipline preaches simplicity. XP tells us to build the
simplest system that meets current requirements, recasting this principle as
You Aren"t Going to Need It. What this means is that you should implement
things when you actually need them, not when you realize that you might need
them in the future. The RUP says almost the same thing using different words
and at different levels: Manage your requirements, continually prioritize, and
assess progress. Well-defined, prioritized requirements simplify the
developer™s decision making about what to do. The RUP also encourages the use
of components and the Unified Modeling Language to help manage design
complexity.

XP

RUP

RUP UML

It is easy to misinterpret the XP advice and mistakenly assume that you do not
have to pay attention to infrastructure and architecture. But simple design
does not mean that you can ignore required infrastructure or architecture.
There i1s a sharp difference between RUP and XP in this area, which we will
discuss next month under the XP practice of "metaphor."
XP
RUP XP
XP

Testing: The Last Word?

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 7/19

Test first, then code! This is wisdom
from XP, and it is good. The other testing pearl from XP is that the customer
provides the acceptance test. Programmers write unit tests to ensure that the
code does what they think i1t does. Customers write acceptance tests to ensure
that the system does what it is supposed to do. RUP has a general framework
for testing and provides guidance on how to write effective tests. In addition
to unit and customer written tests, others may be required: for example, load
tests for Web sites. Combine RUP and XP, and you get an excellent quality
focus for your team.

XP

RUP
Web RUP XP

In XP, the development team uses the test results to decide whether the system
Is ready for the customer. If the system passes all acceptance tests, then the
software is ready. RUP suggests other acceptance criteria in addition to
testing. Depending upon the project, you might consider including customer
training, on-site installation, documentation, and several other items in your
product acceptance criteria. Simply because a system passes the tests does not
ensure that a programmer (or programming pair) has not inserted a trap door or
some other time bomb in your software. Sometimes, depending upon the type of
system, you need more rigorous code inspections by independent auditors.

XP

RUP ,

Refactoring: A Little Goes a Long Way

Refactoring 1s the act of rewriting code to improve it. It is also a technique
for keeping the design simple. RUP does not address code refactoring, but that
does not mean you should not consider i1t. Be aware, however, that refactoring
may create a risk for your team. What"s simple to one programmer may be
complex to another. If you do too much refactoring, then the team may thrash
around and lose valuable time developing the code.

RUP

Pair Programming: Are Two Heads Better Than One?
?

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 8/19

There 1s evidence that pair programming is an effective way to improve
programmer productivity. Programmers remain focused, and because they get
immediate feedback, quality improves. Pair programming is one way to avoid
code reviews, but i1t places some constraints on a project team:

« The team must be in one location.
= Paired team members must have compatible personalities plus well-
matched programming skills.

Continuous Integration: Do One Build or More Per Day

Every programmer on an XP project must be able to change code and ensure that
it works, not just for unit tests but also for acceptance tests. This requires
frequent builds: one or more a day. This practice is an excellent one. In
order for i1t to really work, however, you need powerful configuration
management tools and an effective process for using them. The RUP provides
general guidelines for continuous integration as well as specific information
on using Rational ClearCase. In fact, at Rational, we perform daily
integrations on the complete Rational Suite product family.

XP

RUP Rational
ClearCase Rational Rational Suite

Forty Hour Work Week: No Sleeping Under the Desk
40

What a great idea! Is it practical for your organization? Studies indicate
that most people experience rapidly diminishing returns when they invest more
than forty hours in their work -- especially when it is habitual. An XP
project forbids two consecutive weeks of overtime.

40 XP

On-site Customer: A Must-Have?

Originally, XP said, "A real customer must sit with the team, available to

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 9/19

answer questions, resolve disputes, and set small-scale priorities.” This has
been further refined to, "An XP project is steered by a dedicated individual
who 1s empowered to determine requirements, set priorities, and answer
guestions as the programmers have them."

Xp "

The RUP is more flexible. Although it has always maintained that the customer,
in fact all stakeholders, must be adequately represented in steering a
project, the RUP also acknowledges that it is not always possible or desirable
to have a real customer co-located with the development team. Instead, RUP
defines several roles that are responsible for determining the project goals,
scope, and so on, and says that a customer (on-site or not) or some other
appropriate person in the organization can perform the activities mapped to
these roles. It"s not important whether the person is an actual customer, or
whether he or she is actually on site. What is important is that the person be
available to clarify issues, and capable and responsible enough to produce the
information necessary for the team to progress as quickly as possible --
including feedback in a form the team can understand.
RUP
RUP
RUP

Coding Standards: Have Them and Use Them

No one is going to argue against having coding standards. But what is really
important? To use them! It doesn®t matter what the standards are as long as
everyone uses them. The RUP provides three coding standard examples to get you
started: Ada, C++, and Java. As a complement to these coding standards, the
RUP also encourages that you define architectural mechanisms, which
standardize not only the language of the code, but also i1ts structure and
usage (error handling and transaction locking are examples of common
mechanisms).

RUP Ada C++ Java
RUP

Summary

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 10/19

As you can see, there is significant agreement between RUP and XP on nine of
the twelve XP practices. Typically, RUP provides complementary guidance for
doing more to address specific risks.
RUP XP
RUP

As you evaluate both processes vis ?vis your next project, it"s important to
keep in mind this primary rule:
(Vis?Vis)

Ask yourself, "If we don"t perform a specific activity, produce an artifact,
or adopt a practice, will anything bad happen?"
IT the answer is "no,” then don"t do it!

Next month we will look at the three remaining XP practices and discuss
additional pitfalls associated with XP practices. And finally, we"ll examine
what important areas XP does not address.
XP XP
XP

1 See http://www.objectmentor.com/publications/RUPvsXP.pdf, a chapter from

Martin®s forthcoming Object Oriented Analysis and Design with Applications,
Third Edition, from Addison Wesley.

For more information on the products or services discussed In this article,
please click here and follow the instructions provided. Thank you!

Part I1: Valuing Differences

In the last issue of The Rational Edge, we looked at the common ground between
the Rational Unified Process (RUP) and eXtreme Programming (XP). They
certainly have a lot in common. This month, in Part Two of our comparison, we
look at the last three XP practices and at some areas of RUP not covered by
XP.

The Rational Edge RUP XP
XP
RUP

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 11719

There are three XP practices we deferred discussing until this issue. They
are:
XP

= Small releases
« Collective code ownership
~ Metaphor

We will discuss each of these. But first, 1°d like to point out that the set
of XP practices we are talking about is the original twelve practices set
forth by Kent Beck in his book Extreme Programming Explained: Embrace Change,
published by Addison-Wesley in 1999. As of March 15, 2001, there were several
additional supporting practices listed on the Extreme Programming Roadmap
page: http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap. This indicates the
dynamic and somewhat experimental nature of XP, which is not necessarily a bad
thing. Any process needs to be dynamic and keep up-to-date with proven best
practices. At the end of this article we will also look at some ways RUP and
XP can work together to provide a good experience for software development
project members.

XP Kent
Beck Embrace Change 1999 Addison-Wesley XP
2001 3 15 "XP http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap."
XP
RUP XP

Small Releases: How Small and Released to Whom?

What is a release? Depending upon how you answer this question, RUP and XP can
seem quite similar in their concepts of a release. RUP defines a release as:
"_..a stable, executable version of product, together with any artifacts
necessary to use this release, such as release notes or installation

instructions."® Furthermore, according to RUP, releases are either internal or

external. By this definition, a "release" creates a forcing function that
ensures a shippable product, rather than a system that is only 80 percent
complete. XP defines a release as "...a pile of stories that together make

business sense."2 In much of the discussion about small releases on some XP

Web pages, the practice of small releases seems to coincide with the practice

of continuous integration.§ IT you interpret the stories to mean the code as

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 12/19

well as any artifacts necessary to use the release, and you accept the release
as either internal or external, then the RUP and the XP concepts of a release
are almost identical.

RUP XP RUP

XP "o "2 Xp

RUP XP

RUP invites you to consider more than just code. A release, especially an
external one to the customer, may prove useless unless accompanied by release
notes, documentation, and training. XP addresses code and assumes the rest
will appear. Since code is the primary artifact of XP, the others need to be
derived from it. This implies certain skills that may not be obvious. For
example, technical writers might need to be able to read the code to
understand how the system works in order to produce the documentation.

RUP

XP

XP

I have talked with several people who assume the frequent releases in XP are
all to be delivered to an external customer. In fact, XP is not clear about
this. In Extreme Programming Installed, the authors urge you to get the code

into the customer®s hands as frequently as possible.i The fact i1s, in many

organizations customers cannot accept frequent software updates. You need to
weigh the benefits of frequent delivery against the impact on the customer®s
ability to be productive. When you are unable to deliver a system to the
customer, you should consider other ways of getting feedback, such as
usability testing. On a RUP-based project, you typically deliver to the
customer in the last construction iteration as well as in the transition phase
iterations.
XP
XP Extreme Programming Installed

[E

RUP

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 13/19

Collective Code Ownership: Yours, Mine, and Ours

XP promotes "collective code ownership,” which means that when you encounter
code that needs to be changed, you change i1t. Everyone has permission to make
changes to any part of the code. Not only do you have permission to make the
changes -- you have the responsibility to make them.

XP

There is an obvious benefit with this practice. When you find code that needs
to be changed, you can change it and get on with your work without having to
wailt for someone else to change 1t. In order for this practice to work,
however, you need to also practice "continuous integration™ and maintain an
extensive set of tests. If you change any code, then you need to run the tests
and not check in your code changes until all tests pass.

But will collective ownership work everywhere? Probably not. Large systems
contain too much content for a single person to understand it all at a
detailed level. Some small systems often include code that is complex due to
its domain or the function it performs. If a specialist iIs required, then
collective ownership may not be appropriate. When a system is developed in a
distributed environment, it is not possible for everyone to modify the code.

In these cases, XP offers a supporting practice called "code stewardship."§

With code stewardship, one person, the steward, has responsibility for the
code, with input from other team members. There are no guidelines when to
apply code stewardship instead of collective code ownership.

ot

XP " "

Collective code ownership provides a way for a team to change code rapidly
when it needs changing. Are there any potential drawbacks to this? If you
consider all the ways code i1s changed, then there are some things you may want
to control less democratically, in a centralized way -- for example, when code
iIs modified because it lacks some functionality. If a programmer is
implementing a story (or a use case, or a scenario), and requires behavior
from a class, collective code ownership allows the class to be modified on the

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 14/19

spot. As long as the system is small enough for a programmer to understand all
of the code, this should work fine. But as the system gets larger, it is
possible that the same functionality might be added to code that exists
somewhere else. This redundancy might be caught at some point and the code
refactored, but it is certainly possible for it to go unnoticed and for the
functionality to begin diverging.

You may want to start a project using collective code ownership to allow your
team to move quickly. As long as you have good code management tools and
effective testing, then it will work for you -- up to a point. As a project
leader or manager, however, you need to be on the lookout for the point when
the code base becomes too large or too specialized in places. When this
happens, you may want to structure your system into an appropriate set of
components and subsystems and ensure that specific team members are
responsible for them. RUP provides guidance and other help on how to structure
your system.

RUP

System Metaphor: It"s Like Architecture

A metaphor 1s a figure of speech that allows us to make comparisons. It is one
way that we learn: "A motorcycle is like a bicycle, but it has a motor
attached.” XP uses a system metaphor instead of RUP"s formal architecture.
This system metaphor is "...a simple shared story of how the system works.
This story typically involves a handful of classes and patterns that shape the

core flow of the system being built.">> Based on comparisons with familiar

things, patterns help us understand new and unfamiliar things.

" XP RUP

o

And indeed, the XP system metaphor may be a suitable replacement for

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 15/19

architecture in some cases, but usually only in small systems. For many, if
not most, software systems, you need more than a simple shared story. How much
more you need depends upon many factors.

XP RUP

By contrast, RUP is an architecture-centric process.Z Architecture iIs more

than a metaphor, although it may include several metaphors. Architecture is
concerned with structure, behavior, context, usage, functionality,
performance, resilience, reuse, comprehensibility, constraints, trade-offs,
and aesthetics. It is usually not possible to capture all of this in a simple
shared story. Architecture does not provide a complete representation of the
whole system. It concentrates on what is architecturally significant and
important in reducing risks.

1~

RUP

RUP provides a wealth of guidance on constructing and managing architecture.
It helps the practitioner construct different views of the architecture for

different purposes. 8 The different views are needed because there are

different aspects that need to be highlighted and different people who need to
view the architecture.
RUP

|oo

A RUP-based project will address architecture early. Often an executable

architecture is produced during the Elaboration Phase. This provides an

opportunity to evaluate solutions to critical technical risks, and the

architecture is built upon during subsequent construction iterations.
RUP

An executable architecture is a partial implementation of the system, built to
demonstrate selected system functions and properties, in particular those
satisfying non-functional requirements. It is built during the elaboration
phase to mitigate risks related to performance, throughput, capacity,

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 16/19

reliability and other "ilities"”, so that the complete functional capability of
the system may be added in the construction phase on a solid foundation,
without fear of breakage. It is the intention of the Rational Unified Process
that the executable architecture be built as an evolutionary prototype, with
the intention of retaining what is found to work (and satisfies requirements),

and making it part of the deliverable system.Z

RUP

1~

What"s Not Covered by XP That Is in RUP?
XP RUP

Your project may be able to use XP for developing the code. If not, then you
may need to add some additional process, but just enough to reduce your risks
and ensure that you are able to deliver the right product to your customers on
time.

XP

However, when you look at a development project as a complete set of
deliverables, code, documentation, training, and support, there are many
things RUP addresses that are not considered in XP. Again, you need to
determine whether they are needed for your specific project. The following
list provides things you may need to consider. The list is not exhaustive. You
can find additional information about these items in the Rational Unified
Process.

RUP XP
RUP

~ Business modeling. The whole subject of business modeling is absent from
XP. Systems are deployed into an organization. Knowledge of the
organization can be important when identifying the requirements and for
understanding how well a solution might be accepted.
XP

= Project inception. XP assumes the project has been justified and does not
address how that justification takes place. In many organizations, a
business case must be made before a project begins in earnest. RUP helps
a team make i1ts business case by developing stakeholders® needs and a

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 17/19

vision.
. XP
RUP

=« Deployment. The whole area of system deployment is missing from XP. Any
system needs supporting materials, minimally online documentation. Most
need more. Commercial software products require packaging, distribution,
user manuals, training materials, and a support organization. The RUP
Deployment discipline provides guidance for practitioners on how to
create appropriate materials and then use them.
XP

RUP

Mix and Match for Best Results

Process diversity is important.g One size does not fit all projects. The

process you use for your project should be appropriate for it. Consider what
your project needs and adopt the right approach. Consider all aspects and
risks. Use as much as you need, but neither too little nor too much.

RUP and XP provide two different approaches to software development projects.
They complement each other in several ways. XP concentrates on code and
techniques for a small team to create that code. It stresses face-to-face
communication and places minimal effort on non-code artifacts. RUP is a
process framework that you configure for different types of projects. It
invites you to consider risks and risk mitigation techniques. RUP is often
misinterpreted as being heavy because, as a framework, it provides process
information for many types of projects. In fact, a configured instance of RUP
may be very light, depending upon the risks that need to be addressed. It may
incorporate some of the excellent techniques of XP and other processes if they
are appropriate for the project at hand.

RUP XP XP

RUP
RUP RUP
RUP
XP

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 18/19

IT my project is only about creating code, I may use just XP. However, almost
all of the projects 1 work on require initial business decisions and planning,
complete documentation, support, and deployment to customers. For this reason,
I would more likely start with RUP and use the appropriate XP practices that
will help my team move ahead quickly and mitigate real risks the project
faces.

XP

RUP XP

As a software engineer, | try to have a well-stocked toolbox of techniques,
processes, and tools that help me succeed. 1'm glad to have both RUP and XP as
part of my collection. More techniques in my toolbox means that I can provide
better value to my project and my organization. In addition, as a project
manager or process engineer, | can create an instance of a process for a
project that addresses the organization®s need for controls while providing
individual project members with an environment that can be fun and satisfying.

RUP XP

! Rational Unified Process Glossary.

2 Kent Beck, Extreme Programming Explained: Embrace Change. Reading, MA:

Addison-Wesley 1999, p.178.

3 http://c2.com/cqgi/wiki?FrequentReleases.

4 Ron Jeffries et al, Extreme Programming Installed. Reading, MA: Addison-

Wesley, 2000, p.50.

5 http://c2.com/cqi/wiki?CodeStewardship.

6 http://c2.com/cgi/wiki?SystemMetaphor .

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

Aka 19/19

" This is described in Philippe Kruchten, "The 4+1 View of Architecture.” IEEE

Software, November, 1995.

8 This definition is taken from the Rational Unified Process glossary.

9 For more information on process diversity, see Mikael Lindvall and lona Rus,

"Process Diversity in Software Development." IEEE Software, July/August 2000.

For more information on the products or services discussed In this article,
please click here and follow the instructions provided. Thank you!

?

http://ww.AKA.org.cn
Email AKAMagazine@yahoo.com

file://F:\AKA\AKA \AKA Magzine\RUP%20and%20XP_Chinese.html 2002-3-29

