Linux (

Silvio Cesare

[AKA]
- Silvio Cesare <silvio@big.net.au>
- http://www.big.net.au/~silvio
- http://virus._beergrave.net
- January 1999
x86 ( x86

Jjmp antidebugl + 2
antidebugl:
.short 0xc606
call reloc
reloc:
popl %esi
jmp antidebug2
antidebug?2:
addl $(data - reloc),%esi
movl 0(%esi),%edi
pushl %esi
Jmp *%edi



data:

$ objdum

8048340:
8048341:
8048343:
8048345:
8048346:
8048349:
804834b:
804834e:
8048353:
8048354:
8048359:
804835a:
804835c:
804835e:
8048363:
8048364:

.long O

p -d a.out

55
89
eb
06
c6
00
00
00
00
00
ff
e’
00
00
90
90

e5
02

e8
00
5e
81

8b

00

00
89

ptrace man )

void foo

{

0)

pushl
movl
Jmp
pushl
00 movb
addb
eb addb
c6 Of 00 addb

7e 00 56 addb
outl
addb

ec 5d ¢c3 addb

nop

int3 (Oxcc)

printf("Hello\n™);

%ebp

Y%esp,%ebp

0x8048347

Y%es

$0x0,%al

%al, (%eax)

%bl, OxFFFFFfeb(Y%esi)
%al ,0xFc6(%ecx)

%cl, 0xFF56007e (Y%ebx)
%eax , $0x0

%al , (%eax)
%cl,0x90c35dec(Yecx)

int3



int main()

{
it ((*(volatile unsigned *)((unsigned)foo + 3) & Oxff) == Oxcc) {
printf("BREAKPOINT\n™);
exit(l);
}
foo();
}
$ gdb

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i586-debian-linux), Copyright 1996 Free Software Foundation, Inc.
(gdb) file a.out
Reading symbols from a.out...done.
(gdb) break foo
Breakpoint 1 at 0x8048373: file break.c, line 3.
(gdb) run
Starting program: /home/silvio/src/antidebug/a.out
BREAKPOINT

Program exited with code 01.
(gdb) quit

$ ./a.out

Hello

$

int3
int3 SIGTRAP

#include <signal.h>

void handler(int signo)
{
}

int main()

{
signal(handler, SIGTRAP);



__asm__ ("

int3
");

printf(“Hello\n");
}
$ gdb

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type 'show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i586-debian-1inux), Copyright 1996 Free Software Foundation, Inc.
(gdb) file a.out
Reading symbols from a.out...(no debugging symbols found)...done.
(gdb) run
Starting program: /home/silvio/src/antidebug/a.out
(no debugging symbols found)...(no debugging symbols found)...
Program received signal SIGTRAP, Trace/breakpoint trap.
0x80483c3 in main ()
(gdb) c
Continuing.
Hello

Program exited with code 06.
(gdb) quit

$ ./a.out

Hello

$

strace  lItrace
ptracel PTRACE_TRACEME]

int main()
{
if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
printf("DEBUGGING. .. Bye\n");
return 1;
}
printf(“Hello\n");
return O;



$ gdb
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type 'show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i586-debian-1inux), Copyright 1996 Free Software Foundation, Inc.
(gdb) file a.out
Reading symbols from a.out...done.
(gdb) run
Starting program: /home/silvio/src/antidebug/a.out
DEBUGGING. .. Bye

Program exited with code 01.
(gdb) quit

$ ./a.out

Hello

$

http://ww. AKA. org. cn
Email AKAM agazine@yahoo.com




LINUX ANTI-DEBUGGING TECHNIQUES
(FOOLING THE DEBUGGER)

Silvio Cesare <silvio@big.net.au>
http://ww._big.net.au/~silvio
http://virus.beergrave.net
January 1999

TABLE OF CONTENTS
INTRODUCTION

FALSE DISASSEMBLY

DETECTING BREAKPOINTS
SETTING UP FALSE BREAKPOINTS
DETECTING DEBUGGING

INTRODUCTION

This article describes anti debugger techniques for x86/Linux (though some of
these techniques are not x86 specific). That is techniques to either fool,
stop, or modify the process of debugging the target program. This can be
useful to the development of viruses and also to those implementing software
protection.

FALSE DISASSEMBLY

This elegant technique produces false disassembly when listed. It produces
this by jumping into the middle of instruction. The real code starts in the
middle of this instruction, but the disassembly uses the entire instruction
and thus continues disassembly not alligned to the real assembly.

Jjmp antidebugl + 2
antidebugl:
.short 0xc606

call reloc
reloc:

popl %esi



Jjmp antidebug2
antidebug?2:

addl $(data - reloc),%esi

movl 0(%esi),%edi

pushl %esi

Jmp *%edi
data:

.long O

$ objdump -d a.out

8048340: 55 pushl %ebp

8048341: 89 eb5 movl  Y%esp,%ebp

8048343: eb 02 jmp 0x8048347

8048345: 06 pushl Y%es

8048346: c6 e8 00 movb  $0x0,%al

8048349: 00 00 addb  %al, (%eax)

804834b: 00 5e eb addb  %bl,OxFFffffeb(%esi)
804834e: 00 81 c6 OF 00 addb  %al,Oxfc6(%ecx)
8048353: 00

8048354: 00 8b 7e 00 56 addb  %cl,0xFF56007e(%ebx)
8048359: ff

804835a: e7 00 outl  %eax,$0x0

804835c¢: 00 00 addb  %al, (%eax)

804835e: 00 89 ec 5d c3 addb %cl,0x90c35dec(%ecx)
8048363: 90

8048364 90 nop

DETECTING BREAKPOINTS

A breakpoint is defined by overwriting the breakpoint address with an int3
opcode (Oxcc). |IT a program is being traced (man ptrace) then an int3 will
cause the process to stop. This is when the parent process debugging takes
over control. To continue processing it is up to the debugger to overwrite
the int3 opcode with the original opcode. Thus to detect a breakpoint, the



program simply has to check for an int3 opcode. Another solution is to
checksum the code image. If the checksum fails, the code has been modified,
and a breakpoint is probably the culprit.

void foo()
{
printf("Hello\n");
}
int main()
{
if ((*(volatile unsigned *)((unsigned)foo + 3) & Oxff) == Oxcc) {
printf(*"BREAKPOINT\n");
exit(1);
}
foo();
}
$ gdb

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying”™ to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i586-debian-1inux), Copyright 1996 Free Software Foundation, Inc.
(gdb) file a.out
Reading symbols from a.out...done.
(gdb) break foo
Breakpoint 1 at 0x8048373: file break.c, line 3.
(gdb) run
Starting program: /home/silvio/src/antidebug/a.out
BREAKPOINT

Program exited with code 01.
(gdb) quit

$ ./a.out

Hello

$

SETTING UP FALSE BREAKPOINTS

As stated earlier, a breakpoint is created by overwriting the address with an

int3 opcode (0Oxcc). To setup a false breakpoint then we simply insert an int3
into the code. This also raises a SIGTRAP, and thus if our code has a signal

handler we can continue processing after the breakpoint.



#include <signal.h>

void handler(int signo)

{
}

int main()
{
signal(handler, SIGTRAP);
_asm__ ("
int3
");
printf(“Hello\n");

$ gdb
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type 'show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i586-debian-1inux), Copyright 1996 Free Software Foundation, Inc.
(gdb) file a.out
Reading symbols from a.out...(no debugging symbols found)...done.
(gdb) run
Starting program: /home/silvio/src/antidebug/a.out
(no debugging symbols found)...(no debugging symbols found)...
Program received signal SIGTRAP, Trace/breakpoint trap.
0x80483c3 in main ()
(gdb) c
Continuing.
Hello

Program exited with code 06.
(gdb) quit

$ ./a.out

Hello

$

DETECTING DEBUGGING

This is an elegant technique to detect if a debugger or program tracer such as
strace or Itrace is being used on the target program. The premise of this
technique is that a ptrace[PTRACE_TRACEME] cannot be called in succsession more



than once for a process. All debuggers and program tracers use this call to
setup debugging for a process.

int main()
{
if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
printf(""'DEBUGGING. .. Bye\n");

return 1;
}
printf(""Hello\n");
return O;
}
$ gdb

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying” to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i586-debian-1inux), Copyright 1996 Free Software Foundation, Inc.
(gdb) file a.out
Reading symbols from a.out...done.
(gdb) run
Starting program: /home/silvio/src/antidebug/a.out
DEBUGGING. .. Bye

Program exited with code 01.
(gdb) quit

$ ./a.out

Hello

$



