[AKA]
XP
XP
XP
XP
25%
(user stories)
bug
(collective code ownership)
XP
XP
XP
up hill climb

XP

XP "

pair
XP



http://ww. AKA. org. cn
Email AKAMagazine@yahoo.com

How do | start this XP thing?

The most obvious way to start extreme programming (XP) is with a new project. Start out collecting user stories
and conducting spike solutions for things that seem risky. Spend only a few weeks doing this. Then schedule a
planning meeting during which the planning game will be used. Invite customers, developers, and managers to
create a schedule that everyone agrees on. Begin your iterative development with an iteration planning meeting.
Now you're started.

Usually projects come looking for a new methodology like XP only after the project is in trouble. In this case the
best way to start XP is to take a good long look at your current software methodology and figure out what is
slowing you down. Add XP to this problem first.

For example, if you find that 25% of the way through your development process your requirements specification
becomes completely useless, then get together with your customers and write user stories instead.

If you are having a chronic problem with changing requirements causing you to frequently recreate your schedule,
then try the planning game. (Y ou will need user stories first though.) Try an iterative style of development and the
just in time style of planning of programming tasks.

If your biggest problem is the number of bugs in production, then try automated functional tests. Use this test suite
for regression and validation testing.



If your biggest problem is integration bugs then try automated unit tests. Require al unit tests to pass (100%)
before any new code is released into the code repository.

If one or two devel opers have become bottlenecks because they own the core classes in the system and must make
al the changes, then try collective code ownership. (You will also need unit tests.) Let everyone make changes to
the core classes whenever they need to.

Y ou could continue this way until no problems are left. Then just add the remaining practices as you can. The first
practice you add will seem easy. You are solving a large problem with a little extra effort. The second might seem
easy too. But at some point between having afew XP rules and all of the XP rules it will take some persistence to
make it work. Your problems will have been solved and your project is under control. It might seem good to
abandon the new methodology and go back to what is familiar and comfortable, but continuing does pay off in the
end. Your development team will become much

more efficient than you thought possible. At some point you will find that the XP rules no longer seem like rules at
al. Thereis a synergy between the rules that is hard to understand until you have been fully immersed.

This up hill climb is especially true with pair programming, but the pay off of this technique is very large. Also,
unit tests will take time to collect, but unit tests are the foundation for many of the other XP practices so the pay
off is very great.

XP projects are not quiet; there always seems to be someone talking about problems and solutions. People move
about, asking each other questions and trading partners for programming. People spontaneously meet to solve
tough problems, then disperse again. Encourage this interaction, provide a meeting area and set up workspaces
such that two people can easily work together. The entire work area can be open space to encourage team
communication.



